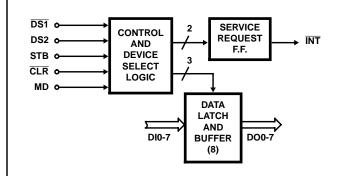


HS-82C12RH

Radiation Hardened 8-Bit Input/Output Port

March 1996


Features

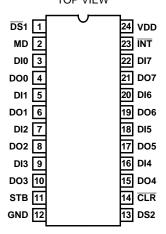
- Devices QML Qualified in Accordance with MIL-PRF-38535
- Detailed Electrical and Screening Requirements are Contained in SMD# 5962-95818 and Intersil' QM Plan
 - Radiation Hardened CMOS Process
 - Total Dose 1 x 10⁵ RAD (Si)
 - Transient Upset > 1 x 108 RAD (Si)/s
 - Latch-Up Immune EPI-CMOS > 1 x 10¹² RAD (Si)/s
- · Low Power Dissipation
- · High Noise Immunity
- Single Power Supply +5V
- Low Input Load Current
- · 8-Bit Data Register and Buffer
- · Asynchronous Register Clear
- Service Request Flip-Flop for Interrupt Generation
- Three-State Outputs
- Bus-Compatible with HS-80C85RH CPU
- Electrically Equivalent to Sandia SA3026
- Military Temperature Range -55°C to +125°C

Description

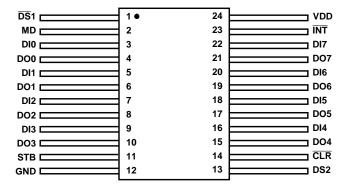
The Intersil HS-82C12RH is a radiation hardened 8-bit input/output port designed for use with the HS-80C85RH radiation hardened microprocessor. It is manufactured using a self-aligned, junction-isolated EPI-CMOS process and features three-state output buffers and device selection and control logic. A service request flip-flop is included for the generation and control of interrupts to the microprocessor. The device can be used in implement many of the peripheral and input/output functions of a microcomputer system. The HS-82C12RH is pinout- and function- compatible with industry-standard 8212 devices.

Functional Diagram

Pin Description


PIN	DESCRIPTION
DI0-DI7	Data In
DO0-DO7	Data Out
DS1, DS2	Device Select
MD	Mode
STB	Strobe
ĪNT	Interrupt
CLR	Clear

Ordering Information


PART NUMBER	TEMPERATURE RANGE	SCREENING LEVEL	PACKAGE
5962R9581801QJC	-55°C to +125°C	MIL-PRF-38535 Level Q	24 Lead SBDIP
5962R9581801QXC	-55°C to +125°C	MIL-PRF-38535 Level Q	24 Lead Ceramic Flatpack
5962R9581801VJC	-55°C to +125°C	MIL-PRF-38535 Level V	24 Lead SBDIP
5962R9581801VXC	-55°C to +125°C	MIL-PRF-38535 Level V	24 Lead Ceramic Flatpack
HS1-82C12RH/Sample	+25°C	Sample	24 Lead SBDIP
HS9-82C12RH/Sample	+25°C	Sample	24 Lead Ceramic Flatpack

Pinouts

24 LEAD CERAMIC DUAL-IN-LINE METAL SEAL PACKAGE (SBDIP) MIL-STD-1835 CDIP2-T24 TOP VIEW

24 LEAD CERAMIC METAL SEAL FLATPACK PACKAGE (FLATPACK) MIL-STD-1835 CDFP4-F24 TOP VIEW

Specifications HS-82C12RH

Absolute Maximum Ratings

Supply Voltage	
Input, Output or I/O Voltage	GND-0.3V to VDD+0.3V
Storage Temperature Range	65°C to +150°C
Junction Temperature	+175°C
Lead Temperature (Soldering 10s)	+300°C
ESD Classification	Class 1

Reliability Information

Thermal Resistance	θ_{JA}	θ_{JC}
SBDIP Package	55°C/W	14°C/W
Ceramic Flatpack Package	74°C/W	13°C/W
Maximum Package Power Dissipation at +125	OC Ambien	t
SBDIP Package		0.91W
Ceramic Flatpack Package		0.68W
If device power exceeds package dissipation of	capability, p	rovide heat
sinking or derate linearly at the following rate:		
SBDIP Package		.18.2mW/C
Ceramic Flatpack Package		.13.5mW/C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Operating Conditions

Operating Voltage Range +4.75V to +5.25V	Input Low Voltage
Operating Temperature Range55°C to +125°C	Input High VoltageVDD -1V to VDD

TABLE 1. DC ELECTRICAL PERFORMANCE CHARACTERISTICS

			GROUP A	ΡΔ		LIMITS		IITS		
PARAMETER	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS			
High Input Leakage Current	IIH	VDD = 5.25V, VIN = 0V, Pin under test = 5.25V	1, 2, 3	-55°C, +25°C, +125°C	-	1	μА			
Low Input Leakage Current	IIL	VDD = 5.25V, VIN = 5.25V, Pin under test = 0V	1, 2, 3	-55°C, +25°C, +125°C	-1	-	μА			
Low Output Voltage	VOL	VDD = 5.25V, IOL = 2mA	1, 2, 3	-55°C, +25°C, +125°C	-	0.5	V			
High Output Voltage	VOH	VDD = 4.75V, IOH = -2mA	1, 2, 3	-55°C, +25°C, +125°C	4.25	-	V			
Static Current	SIDD	VDD = 5.25V, VIN = GND	1, 2, 3	-55°C, +25°C, +125°C	-	100	μА			
Functional Tests	FT	VDD = 4.75V and 5.25V, VIH = VDD-1.0V, VIL = 1.0V	7, 8A, 8B	-55°C, +25°C, +125°C	-	-	-			

NOTE: All devices are guaranteed at worst case limits and over radiation.

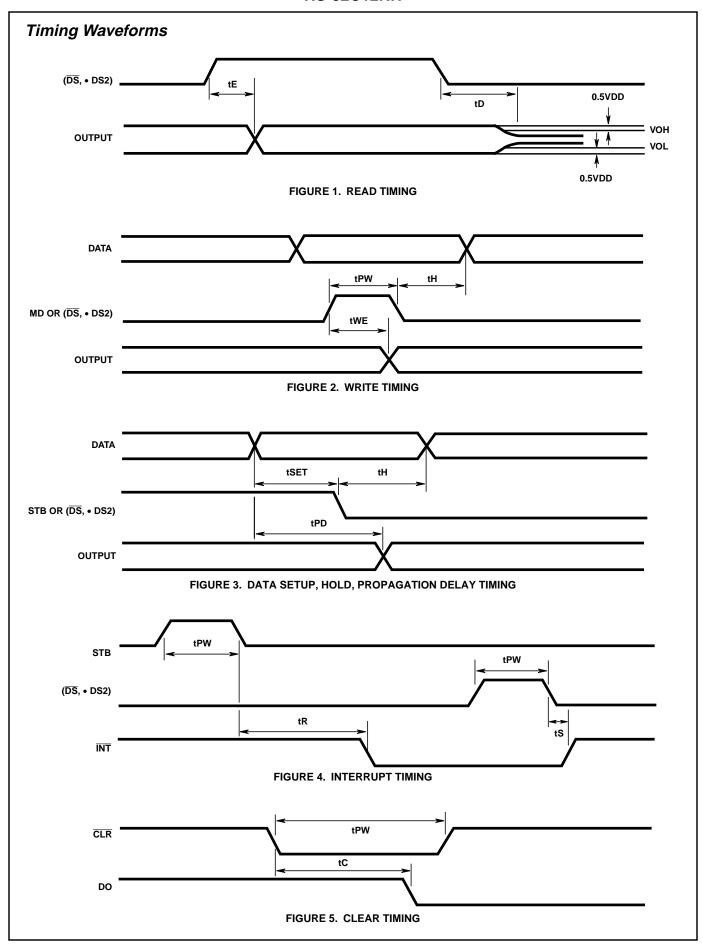
TABLE 2. AC ELECTRICAL PERFORMANCE CHARACTERISTICS

	GROUP A SUB-			LIMITS			
PARAMETER	SYMBOL	GROUPS	TEMPERATURE	MIN	MAX	UNITS	
Data to Output Delay	TPD	9, 10, 11	-55°C, +25°C, +125°C	-	105	ns	
Write Enable to Output Delay	TWE	9, 10, 11	-55°C, +25°C, +125°C	-	200	ns	
Reset to Output Delay	TR	9, 10, 11	-55°C, +25°C, +125°C	-	145	ns	
Set to Output Delay	TS	9, 10, 11	-55°C, +25°C, +125°C	-	100	ns	
Clear to Output Delay	TC	9, 10, 11	-55°C, +25°C, +125°C	-	135	ns	
Output Enable Time	TE	9, 10, 11	-55°C, +25°C, +125°C	-	125	ns	
Output Disable Time	TD	9, 10, 11	-55°C, +25°C, +125°C	-	85	ns	

NOTE:

1. Output Timings are measured with the following conditions: CL = 100pF, VIH = 3.75V, and VIL = 1.0V

Specifications HS-82C12RH


TABLE 3. ELECTRICAL PERFORMANCE CHARACTERISTICS

		CROUP A	GROUP A		LIMITS		
PARAMETER	SYMBOL	CONDITIONS	SUBGROUPS	TEMPERATURE	MIN	MAX	UNITS
Input Capacitance	CIN	VDD = Open, f = 1MHz, All measurements referenced to device ground		T _A = +25°C	-	8	pF
Output Capacitance	COUT	VDD = Open, f = 1MHz, All measurements referenced to device ground		T _A = +25°C	-	8	pF
Pulse Width	TPW	VDD = 4.75, VIH = 3.75, VIL = 1.0	9, 10, 11	-55°C, +25°C, +125°C	-	50	ns
Data Set Up Time	TSET	VDD = 4.75, VIH = 3.75, VIL = 1.0	9, 10, 11	-55°C, +25°C, +125°C	-	30	ns
Data Hold Time	ТН	VDD = 4.75, VIH = 3.75, VIL = 1.0	9, 10, 11	-55°C, +25°C, +125°C	-	40	ns

NOTE: The parameters listed in Table 3 are controlled via design or process parameters and are not directly tested. These parameters are characterized upon initial design release and upon design changes which would affect these characteristics.

TABLE 4. POST 100K RAD ELECTRICAL PERFORMANCE CHARACTERISTICS

NOTE: The Post Irradiation test conditions and limits are the same as those listed in Table 1 and Table 2.

Functional Description

Data Latch

The data latch is comprised of eight "D" type flip-flops. The output of each flip-flop will follow the corresponding data input (DI0 - DI7) when the clock (C) is high. The clock input is level sensitive and the data becomes latched when the clock returns low.

An asynchronous reset (\overline{CLR}) is used to clear the latched data. Since the clock (C) overrides the reset (\overline{CLR}) , the data must be in the latched state in order to clear the flip-flops. If the data is not latched (i.e. clock is high) when \overline{CLR} goes low, then the Q outputs of the data latch will continue to follow the data input, overriding the reset signal.

Output Buffer

Three-state buffers are used to provide output drive for the data latch. A high level on the "output buffer enable" control line enables the buffer outputs. When "output buffer enable" is low the buffer outputs are forced to the high-impedance state.

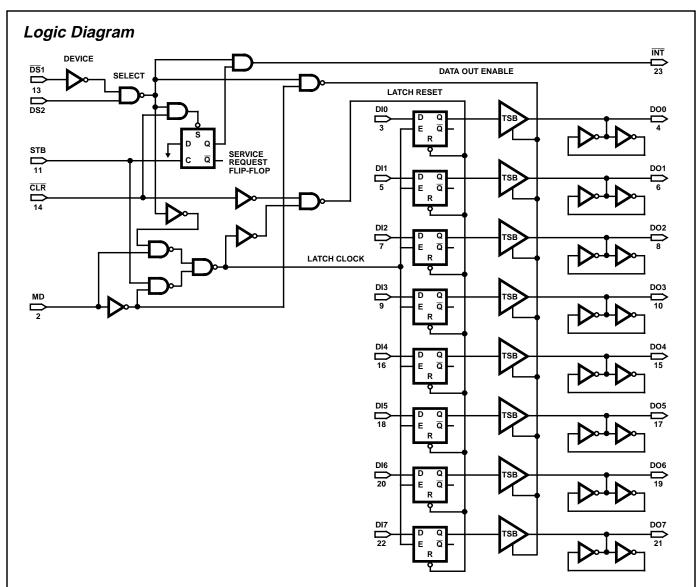
Device Select Logic

The inputs $\overline{DS}1$ and DS2 are used for device selection. When $\overline{DS}1$ is low and DS2 is high, the device is selected. The output buffers are enabled and the service request flipflop is asynchronously cleared when the device is selected.

Mode

the mode input (MD) is used to control the state of the output buffer and to determine the source of the data latch clock (C). When MD is high, the output buffers are enabled and the source of the data latch clock (C) is the device select logic ($\overline{DS}1 \bullet DS2$).

When MD is low, the state of the output buffer is controlled by the device select logic ($\overline{DS1} \bullet DS2$) and the source of the data latch clock is the strobe (STB) input.


Strobe

The strobe input (STB) is used as the data latch clock (C) when the mode input (MD) is low. The service request flip-flop is synchronously set on the negative going edge of STB.

Service Request Flip-Flop

The service request flip-flop is to generate interrupts to microcomputer systems. It is negative edge triggered and asynchronously cleared (reset).

The output of the service request flip-flop is AND-gated with the device select logic ($\overline{DS1} \bullet DS2$). The output of the AND gate is the active low interrupt (\overline{INT}) signal.

TRUTH TABLE 1. DATA OUT

STB	MD	DS1 • DS2	DATA OUT EQUALS
0	0	0	High Z State
1	0	0	High Z State
0	1	0	Data Latch
1	1	0	Data Latch
0	0	1	Data Latch
1	0	1	Data In
0	1	1	Data In
1	1	1	Data In

TRUTH TABLE 2. INT

CLR	DS1 • DS2	STB	Q*	ĪNT
0 RESET	0	0	0	1
1	0	0	0	1
1	0		1	0
1	1 RESET	0	0	0
1	0	0	0	1

^{*} Internal Service Request Flip-Flop

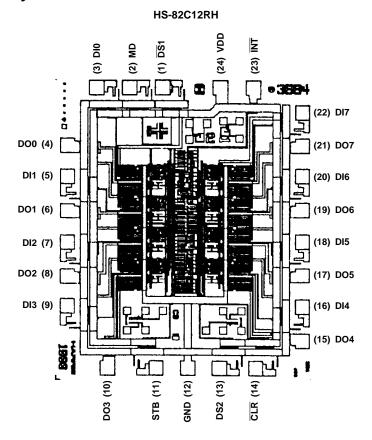
Metallization Topology

DIE DIMENSIONS:

90 x 76 x 14 ± 1mils

METALLIZATION:

Type: AISi


Thickness: 11kÅ ± 2kÅ

GLASSIVATION:

Type: SiO2

Thickness: 8kÅ ± 1kÅ

Metallization Mask Layout

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site http://www.intersil.com